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EYTAN AGMON 

Tonality: An Owner’s Manual, by Dmitri Tymoczko. Oxford Studies in Music 

Theory. New York: Oxford Academic, 2023. xiii, 612 pp. 

 

Dmitri Tymoczko (henceforth, “the author”) dedicates his recent book, 

Tonality: An Owner’s Manual (henceforth, “the book”), “to anyone who cares 

enough to make it all the way through” ([p. v], original emphasis). I assume that 

by “[caring] enough” the author means caring about tonality, the first word in 

the title of the book. By “[making] it all the way through,” I assume that he 

refers not only to the book’s extraordinary length, but also to its sprawling 

contents. “This book grew like a city” the author begins the “Preface and 

Acknowledgments” ([p. xi]), “each gleaming draft built over the ruins of a 

previous version.” Referring to a last-moment revision made after he thought 

“the book was essentially finished…,” the author goes on to confide (p. xii): 

This last revision, so drastic and so late, raised the disturbing possibility that I had 

ceased writing a book in any conventional sense: what had begun as a journey had 

turned into a way of life, my manuscript evolving into a repository for my latest 

thinking on all things music. Every time I learned something new, or changed my 

mind, I updated the relevant file on my computer. Having faced the prospect of 

spending the rest of my life endlessly writing and rewriting the same words—along 

with the attendant familial disapproval—I resolved to stop. The result is this snapshot 

of my thinking as of the time of publication. Already I worry that readers will be 

reluctant to climb so far out on my own little conceptual limb. And though I have 

tried to be clear, I am aware that the material is extremely challenging.  

Given that the book is so very unconventional, a conventional review of it, 

in terms of both length and content, would correspondingly miss the mark. 

Indeed, the first practical decision I had to make, in deciding to review the book 

at all, was to do so in two parts: Part I (the present review) concentrating on 

roughly the first half of the book, chapters 1−5 (pp. 1−252), to be complemented 

by a Part II (a projected sequel) that will concentrate on the second half, chapters 

 
1 The review was solicited by The Journal of the American Musicological Society, but due to its 

length was prevented from being published there. Many thanks to Ehud de Shalit for 

commenting on an early draft of the mathematical appendix. 
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6−10 (pp. 253−532). Such a broad division of the book into two parts is 

suggested by the author when he outlines (p. 33): 

This book is framed by two largely analytical chapters. Chapter 2 argues that a 

variety of rock progressions, all unusual from the standpoint of classical theory, 

reflect straightforward features of musical geometry—and hence that the intuitive 

competence of the rock musician is in part a matter of knowing one’s way around 

the space of chromatic triads. This chapter is meant to provide an accessible 

introduction to my general approach. Chapter 10 makes a broadly similar point about 

Beethoven, focusing on what I call the “Ludwig” schema, and considering some of 

the philosophical challenges his music poses. This is more of a culmination, linking 

technical issues in voice-leading geometry with philosophical questions about 

analysis. Together, the two chapters suggest that a range of different musical styles 

can be linked by a subterranean geometrical logic. 

“The latter part of the book [i.e., chapters 6−10],” the author further clarifies, 

“turns to the harmonic system, a set of initially implicit norms that were 

eventually codified by figures such as Rameau and Riemann” (p. 34, original 

emphasis). As I will argue subsequently in this review, only in this part of the 

book is the term “tonality” engaged in any normative sense. 

A second and more substantial decision that I had to make concerns the 

algebra that underlies the “geometrical logic” so central to the book, particularly 

its first part. After struggling in vain to make sense of the “spiral diagrams” that 

supposedly capture the logic, I came to an important conclusion: the diagrams 

suggest a valuable music-algebraic insight, provided that, as the author hopes in 

the dedication cited above, one cares enough to penetrate the “extremely 

challenging” content underneath which it is buried. For reasons to be clarified 

shortly I will use the rubric “Voice-Leading Sums under Translation and 

Tymoczkian Permutation of Chords”—VLS/TTPC for short, to refer to this 

insight, nowhere formulated in the book yet hinted at on more than one 

occasion.2 Mathematically inclined readers will find in the appendix of this 

review its formalization and proof. Since, as I will argue in detail in due course, 

the spiral diagrams, “the main theoretical models used in this book” (p. 580), 

make hardly any sense except as poorly executed attempts to express aspects of 

VLS/TTPC, I have found it necessary to structure this review somewhat 

unorthodoxly. 

Focusing on roughly the first half of the book (chapters 1−5), this review 

article consists of five main sections, grouped into two large parts. In sections 

3−5 I challenge four claims central to the book at large. Specifically, in section 

3 I challenge the claim that the “spiral diagrams” are “simple and intuitive” 

geometric representations of what the author refers to as “hierarchically nested 

 
2 Most explicitly on pp. 41−42, 68−69, 90, and 98. 
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transposition” (p. 42). In section 4, I challenge the claim that the author’s idea 

of “transposition along a collection” is “the single most important concept in 

music theory” (p. 37). In this section I also challenge the claim made at the very 

outset of the book, in reference to the famous chordal succession that opens 

Gesualdo’s 1611 madrigal, Moro lasso, that there is “a unified musical logic” 

(p. 9) by which, in certain selected passages “… Stravinsky, Mahanthappa, and 

Pachelbel [among others, like Mozart, Beethoven, Schubert, and Debussy] are 

all doing the same thing” (p. 6)—namely, the “trick” that Gesualdo supposedly 

performs in these measures. Finally, in section 5 I challenge the claim, implicit 

in the book’s title, that its subject matter is tonality, a challenge that applies to 

roughly the first half of the book, on which this review focuses. Going 

backwards, in section 2 I prepare the arguments of sections 3−5 by placing the 

four critiqued claims, directly or obliquely, in the context of VLS/TTPC. 

Finally, in section 1 I present VLS/TTPC informally. 

Again, for a review, this is admittedly an unusual structure. However, to 

have presented sections 3–5 independently of sections 1–2 would have been 

tantamount to dismissing the book, or at least its first half, as incoherent. I would 

like to believe, rather, that despite the book’s severe shortcomings, a weakly 

articulated idea in it is worthy of attention. 

1. 

Consider Example 1. Relative to an underlying “scale” defined by an “octave” 

consisting of seven “steps” (hence, 𝑎 = 7, 𝑎 being the number of steps to the 

octave), one sees two pairs of “chords” or ordered sets of steps: dyads in (a) and 

triads in (b) (hence, 𝑛 = 2, 3, respectively, 𝑛 being the number of chordal 

elements). For present purposes, it will be convenient to refer to the steps by 

their conventional names, e.g., C5, E5. One should keep in mind, though, that 

since the underlying scale is “purely diatonic,” certain distinctions implicit in 

staff notation and conventional note-nomenclature are irrelevant, notably the 

distinction between intervallic qualities: e.g., “major second” versus “minor 

second.” 

 

Example 1  Permutation and translation of a dyad (a) and a triad (b) relative to the 7-scale 
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The parameters 𝑝 and 𝑡 given in each of the two parts of the example refer 

respectively to the operations of cyclic permutation and translation by which the 

second chord is derived from the first. Given an 𝑛-ad (i.e., dyad, triad, tetrad, 

etc., for 𝑛 = 2, 3, 4, etc., respectively), its “translation” is the transposition of 

each of its 𝑛 steps by some fixed step-interval (e.g., “descending fifth”). As for 

“cyclic permutation,” it corresponds, approximately, to “inversion” in the sense 

of elementary music theory: “first inversion,” “second inversion,” etc. I say 

“approximately” because the correspondence only works under the assumptions 

that the chordal elements lie within a single octave (“closed position”) and are 

ordered from low to high. Following the author, subsequently in this review I 

will point out that this limited sense of “permutation-as-elementary-theory-

inversion” may be generalized to chords in any spacing and ordering. Turning 

back to Example 1, one may easily verify that the second dyad in (a) is the 

combined result of one downward permutation of the first dyad (hence, 𝑝 = −1) 

and a translation by “ascending fourth” (hence, 𝑡 = 3; the order in which one 

performs these two operations is irrelevant). Similarly, the second triad in (b) is 

a translation of the first triad by −2 (“descending third”) combined with one 

upward permutation (i.e., “root position” to “first inversion”).3 

Before looking at the remaining notations in the example, consider another 

set of examples, analogous to Example 1, except that the underlying scale is 

now defined by a 12-step octave (i.e., 𝑎 = 12), rather than seven (Example 2). 

Since staff notation is inherently incapable of representing the intervals of the 

12-step scale short of interpreting them arbitrarily in 7-step fashion, as in 

“augmented prime,” “minor second,” “doubly diminished third,” etc., all for the 

unit interval, my earlier caveat concerning staff notation is even more pertinent. 

Therefore, in referring to the steps of this “purely chromatic” scale in the text, I 

will avoid conventional nomenclature altogether and will use instead numbers 

as familiar from musical “set theory.”4 Thus, in Example 2(a) we have a (0, 4, 7) 

triad that is permutated downward once (𝑝 = −1) and translated four steps 

upwards (𝑡 = 4), and in Example 2(b) an octad (𝑛 = 8), represented 

“melodically” on the upper staff (that is, ordered in time), is translated by 3 and 

permutated by −2 (lower staff).5 Finally, in Example 2(c), the septad 

 
3 Our atomic objects are “steps” rather than “step classes,” and therefore permutation in the 

sense discussed is not truly “cyclic”: a succession of permutations in one direction can only 

yield an octave translation of the original chord, never the original chord. Readers 

uncomfortable with the term “cyclic permutation” may wish to replace it mentally with “quasi-

cyclic permutation.” Henceforth I will often write “permutation” in the sense of “(quasi-) cyclic 

permutation.”  
4 Throughout this review, “number” refers to integers, that is, whole numbers. 
5 In terms of applying the same operation recursively, permutation behaves exactly like 

translation. Thus, 𝑝 = −2 means that permutation by −1 (one descending permutation) is 

applied twice in succession. 
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(0, 2, 4, 5, 7, 9, 11), also represented melodically on the upper staff, is 

permutated and translated by (𝑝, 𝑡) = (−4, 7) (lower staff). 

 

 

Example 2    Permutation and translation of a triad (a), octad (b), and septad (c), all relative to the 

12-scale 

In Example 1 as well as Example 2(a), slurs or line segments connect 

elements of the first chord with corresponding elements of the second. Slurs 

represent an identity between the two corresponding elements. That is, the 

interval, from the slurred element of the first chord to its corresponding element 

in the second (the value of which is obtained, as usual, by subtracting the former 

from the latter), is zero. Lines represent non-zero intervals, the values of which 

are given above or below the corresponding lines. In Examples 2(b) and 2(c), 

where chords are represented “melodically,” intervals between corresponding 

chord-elements, be they zero or non-zero, are displayed in the proper positions 

between the staves. 

For any ordered pair of chords of the same cardinality 𝑛, an ordered set of 

𝑛 numbers of the type just described may be thought of as the “voice leading” 

from the first chord to the second. Very differently from permutation and 

translation, the voice leading “generates” the second chord from the first in the 

manner of “part writing”: “displace the first step of the first chord by the first 

voice-leading interval, displace the second step by the second interval,” etc. 

Now, the sum of the 𝑛 intervals that constitute the voice leading from the 

first chord to the second may be thought of as a measure of how “balanced” the 

voice leading is: the smaller the absolute value of the sum, the more balanced 

the voice leading (trivially, the most balanced voice leading is where the second 

chord is identical to the first). Somewhat like vectors, in other words, exerting 

in opposite directions different magnitudes of force on the same object, the 𝑛 

“voices” express an “overall force” the magnitude and direction of which 

corresponds to their sum. The priorly mentioned VLS/TTPC insight states that, 
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given an 𝑎-scale and two 𝑛-ads relative to this scale, the second of which is 

generated from the first by permutation 𝑝 and translation 𝑡, the corresponding 

voice-leading sum, or 𝑉𝐿𝑆, equals (𝑎 times 𝑝) plus (𝑛 times 𝑡). In mathematical 

notation: 

 

𝑉𝐿𝑆 = 𝑎𝑝 + 𝑛𝑡. (1) 

 

Even though, as we shall see in section 3, the author employs an idea 

equivalent to and, depending on algebraic context, even the same as 𝑉𝐿𝑆 

(vaguely conceived as a measure of voice-leading balance), and even though, in 

the context of this idea, he manipulates chords using parameters equivalent to 𝑝 

and 𝑡, Equation 1, which the reader may readily check is satisfied in all five 

cases of Examples 1 and 2, is never stated in the book, let alone proven. 

2. 

What is striking about the VLS/TTPC insight as encapsulated in Equation 1 is 

that given an 𝑎-scale and an 𝑛-ad of interest, 𝑉𝐿𝑆 depends only on 𝑝 and 𝑡, that 

is, the values by which the 𝑛-ad is permutated and translated, respectively. As 

the author notes on pp. 68−69 (though in a specific algebraic context, as 

discussed further in section 3), 𝑉𝐿𝑆 does not depend on the type of 𝑛-ad, where 

“type” refers to a class containing all and only 𝑛-ads relatable to each other by 

translation and permutation.6 Thus, for example, any 7-scale dyad, translated 

and permutated, as in Example 1(a), by  𝑝 = −1 and 𝑡 = 3, satisfies 𝑉𝐿𝑆 = −1; 

similarly, any 12-scale triad, permutated and translated, as in Example 2(a), by 

(𝑝, 𝑡) = (−1, 4), satisfies 𝑉𝐿𝑆 = 0. Example 3 displays representatives of two 

different types of 12-scale triads, the permutation and translation of either of 

which by (𝑝, 𝑡) = (−1, 4) satisfies 𝑉𝐿𝑆 = 0. Note in Example 3 how different 

the two voice leadings are, unlike their sums. 

 

 
6 An 𝑛-ad of interest, e.g., the 12-scale triad (0, 4, 7), is usually studied as a representative of an 

𝑛-ad type of interest, that is, the class of all and only 𝑛-ads relatable to the 𝑛-ad of interest by 

permutation and translation. 
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Example 3   Permutation and translation by the same values of two different types of 12-scale triads 

At the same time, it is important to bear in mind the insight’s inherent 

limitations. Most notably, VLS/TTPC only concerns 𝑛-ads of the same type, 

that is, 𝑛-ads that are relatable by permutation and translation. Since, for 

example, such 12-scale triads as (0, 3, 7) and (0, 4, 7) are not of the same type, 

VLS/TTPC has nothing to say regarding “progressions” that include 

representatives of both. I note this built-in limitation of VLS/TTPC because the 

author seems to invest considerable efforts in the book to “work around” it. Such 

misguided efforts inevitably lead, as will be discussed in subsequent sections of 

this review (especially the latter part of section 4, concerning “Gesualdo’s 

trick”), to content that ranges from the deeply problematic to the flatly 

incoherent.7 

First, however, two central concerns in the book should be mentioned, as 

they, too, are best understood vis-à-vis VLS/TTPC. 

The first concern is connected to our working assumption that chords are 

in closed position and are ordered from low to high. Since at least the restriction 

to closed position is quite reasonably not assumed in the book, the notion of 

“(quasi-cyclical) permutation,” thus far assumed to correspond to “inversion” 

in the sense of elementary music theory, must be generalized to chords in any 

spacing. (Regarding order, see the next paragraph.) For, given an arbitrarily 

spaced chord, 𝑝 = 1 cannot simply mean that the lowest (and first) element of 

the chord is octave-displaced to the first available position above its highest 

(and last) element, in analogy to “inversion” in the usual, elementary-theory 

sense. Rather, as discussed by the author on pp. 37−38 and shown in the left-

hand portion of Figure P2.6 (p. 40), reproduced here as Example 4, the 

“inversion” must preserve not only the (quasi-) cyclical ordering of the original 

chord, but also its spacing. I will refer to this generalized sense of chordal 

 
7 An additional limitation of VLS/TTPC reflects the limited adequacy of each of the two scales 

that interest the author the most, the “purely diatonic” 7-scale and the “purely chromatic” 12-

scale, one considered apart from the other, as models of music that might be termed “tonal”—a 

term that appears in the nominal form in the title of the book. This limitation, already hinted at 

in remarks concerning staff notation and conventional note (and interval) nomenclature, will be 

revisited in section 5. 
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“inversion,” captured formally in the appendix of this review in Definition 

2.2(B), as “Tymoczkian permutation,” though I shall often abbreviate the term 

to just “permutation.” The theorem encapsulated in Equation 1 is proven in the 

appendix relative to “permutation” in this sense. 

 

Example 4   From the book’s Figure P2.6 (p. 40). “Forming registral inversions by moving each voice 

along the intrinsic scale formed by the chord’s notes.” © Oxford University Press 2023. Reproduced 

with permission of Oxford Publishing Limited through PLSclear 

It is important to note that, for reasons that need not concern us here, 

Tymoczkian permutation is conceived in the book as “transposition along a 

collection.” I will revisit the notion of Tymoczkian permutation in section 4, 

where vis-à-vis the author’s analytical misusage of it, its dependence on the 

ordering of chordal elements will be made apparent. 

If Tymoczkian permutation in the book is slightly misused and vastly 

overrated (“the single most important concept in music theory,” p. 37), a second 

major concern in it, the “spiral diagrams,” is not so much overrated by the author 

as its execution, discussed in detail in section 3 of this review, is so 

idiosyncratic, as to defy norms of rational discourse. In an attempt to make sense 

of these diagrams nonetheless, based on hints that the author provides here and 

there (some of which were already noted), I will tentatively interpret the claim 

on p. 42—that they represent “hierarchically nested transposition”—to mean 

that they represent recursive translation and (Tymoczkian) permutation of an 𝑛-

ad of interest relative to an 𝑎-scale of interest (usually, the 7-scale or the 12-

scale), generating what may informally be described as a “harmonic sequence.”8 

That is to say, some fixed pair 𝑝 and 𝑡 (respectively representing the degrees of 

permutation and translation), accounts for the relationship between pairs of 

successive 𝑛-ads in the recursion. Through the remainder of this section, I will 

outline a thought-process that, under this interpretation, could have guided a 

quest for representing geometrically such recursions. 

To the extent that cases of relatively balanced voice leading seem 

inherently attractive, a reasonable as well as practical strategy in translating 

 
8 See chapter 4, “Repetition” (pp. 155−202), and its “Prelude: Sequence and Function” (pp. 

151−54).  
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Equation 1 into musically relevant configurations is to restrict the absolute value 

of 𝑉𝐿𝑆. Studying the expression 

 

𝑎𝑝 + 𝑛𝑡, 

 

it is not difficult to see that, since 𝑎 and 𝑛 are both positive (specifically, 𝑎 >

𝑛 ≥ 2), if the expression’s value lies strictly in between – (𝑎 + 𝑛) and 𝑎 + 𝑛, 

then, unless 𝑝 or 𝑡 equal zero, these two parameters must be of opposite signs, 

that is, if one is positive the other is negative. Indeed, as we shall see in section 

3, the author generally assumes that permutation and translation work in 

opposite directions. 

We note next that 

 

𝑎𝑝 + 𝑛𝑡 = 𝑎(𝑝 + 𝑘𝑛) + 𝑛(𝑡 − 𝑘𝑎). 

 

In other words, adding to 𝑝 some multiple 𝑘 of 𝑛 is equivalent to adding to 𝑡 the 

same multiple 𝑘 of 𝑎, that is (as noted by the author on p. 42), translation by 𝑘 

octaves. This observation allows one to conveniently restrict the 𝑝-values to the 

range strictly in between 0 and 𝑛 if 𝑝 is positive, or between −𝑛 and 0 if 𝑝 is 

negative. Working the algebra together with our two earlier assumptions, 

  

𝑎 > 𝑛 ≥ 2, – (𝑎 + 𝑛) < 𝑉𝐿𝑆 < 𝑎 + 𝑛, 

 

we find that the 𝑡-values are similarly constrained to the range between −𝑎 and 

0 if 𝑝 is positive, or between 0 and 𝑎 if 𝑝 is negative. Indeed, the corresponding 

ranges 0 < 𝑝 < 𝑛, −𝑎 < 𝑡 < 0, or −𝑛 < 𝑝 < 0, 0 < 𝑡 < 𝑎, are generally 

assumed in the book. A final useful restriction that I will use is to pairs (𝑝, 𝑡) 

that satisfy −
𝑎

2
< 𝑡 ≤

𝑎

2
.9 I shall refer henceforth to such pairs as “standard.” 

As we shall see in section 3, |𝑉𝐿𝑆| < 𝑎 + 𝑛 is in fact far too generous a 

relation in terms of capturing the types of voice leadings that interest the author 

the most. The author, we shall see, is most interested in voice leadings that are 

maximally, but not trivially, balanced, that is, voice leadings of which |𝑉𝐿𝑆| is 

minimal, exclusive of the case 𝑉𝐿𝑆 = 𝑝 =  𝑡 = 0. But before we can turn to the 

question of representing geometrically voice leadings of this sort, we must 

 
9 That is, translation travels the shortest of the two possible distances, e.g., ascending 4th rather 

than descending 5th, which, together with permutation operating in the opposite direction, 

yields the same overall result. In case the notion “shortest distance” is inapplicable, as in 

translation of ±6 relative to the 12-scale, the ascending route is assumed. 



 

 

A Manual for One User    10 

consider two mutually exclusive algebraic scenarios that have crucial 

implications for this task.10 

Under the first scenario 𝑎 and 𝑛 are coprime, that is, their greatest common 

divisor—the largest number that divides both—is 1; henceforth I will use the 

often-encountered notation gcd(𝑎, 𝑛) = 1 to express this relation. For example, 

in Example 1, 𝑎 = 7 is a prime number and is thus coprime with (or relatively 

prime to) any number; similarly, in Example 2(c) we have gcd(12, 7) = 1. 

If gcd(𝑎, 𝑛) = 1, Equation 1 defines a bijection between ℤ𝑎𝑛 and 

ℤ𝑎 × ℤ𝑛.11 It follows that 𝑉𝐿𝑆 = 0 if, and only if, (𝑝, 𝑡) = (0, 0)—that is, the 

voice leading is balanced trivially.12 Therefore, any maximally, but not trivially, 

balanced voice leading satisfies |𝑉𝐿𝑆| = 1. Writing (𝑝−, 𝑡−) for the unique 

standard (𝑝, 𝑡) if 𝑉𝐿𝑆 = −1, and (𝑝+, 𝑡+) if 𝑉𝐿𝑆 = 1, we have: 

 

(𝑝−, 𝑡−) = −(𝑝+, 𝑡+) = (−𝑝+, −𝑡+), 

 

that is, the two “𝑝-values” are inverses one of the other (relative to addition), 

and similarly, the two “𝑡-values.” 

Our task, then, is to find, relative to the given coprime 𝑎 and 𝑛, the unique 

standard pairs (𝑝±, 𝑡±) satisfying 

 

𝑎𝑝± + 𝑛𝑡± = ±1. 

 

In general, an algorithm can be used to execute this task; but for small numbers, 

trial and error will usually suffice. For example, if, as in Example 1(a), (𝑎, 𝑛) =

(7, 2), then (𝑝±, 𝑡±) = (±1,∓3). 

We may now turn to the question that prompted this entire discussion. As 

an example of the case gcd(𝑎, 𝑛) = 1, how can one represent geometrically the 

recursive transformation of (say) the 7-scale dyad (C4, E4), by the two standard 

pairs of values (𝑝+, 𝑡+) and (𝑝−, 𝑡−) for permutation and translation each, 

namely (1, −3) and (−1, 3), values that represent non-trivially maximally 

balanced voice leading? 

The simplest representation would be a straight line extending indefinitely 

in both directions from a point labeled (C4, E4), such that the line is ruled from 

this zeroth point (or zeroth “position”) in either direction into segments of equal 

length (Example 5(a)). Each segment-defining point on the line represents the 

transformation by permutation and translation of (C4, E4). Moving along the 

 
10 I apologize to readers that are less mathematically inclined, if the discussion that follows is 

mathematically a bit dense (and a bit lengthy as well). Examples 5−7 capture geometrically the 

main ideas discussed and should be readily accessible. 
11 This follows from the so-called “Chinese remainder theorem.” 
12 Recall that standard pairs (𝑝, 𝑡) are assumed. 
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line to the right or positive direction, for any pair of adjacent dyads, the second 

dyad is the transformation of the first by (𝑝+, 𝑡+), (1, −3) in our example, such 

that 𝑉𝐿𝑆 = 1; moving to the left, the transformation is by (𝑝−, 𝑡−) = (−1, 3), 

and 𝑉𝐿𝑆 = −1.13 In Example 5(b), the dyads of Example 5(a), in a left to right 

order, are notated on the staff. 

 

Example 5   (a) Linear graphic representation of recursive permutation and translation of the 7-scale 

dyad (C4, E4), 𝑉𝐿𝑆 = ±1, moving to the right (respectively, to the left). Positions along the line are 

numbered above the graph. (b) The dyads of Example 5a in staff notation 

A possibly more useful representation, however, might make explicit the 

observation, that it takes exactly 𝑎𝑛 iterations (in our example, 𝑎𝑛 = 7 ⋅ 2 =

14), for the recursive process of permutation and translation to yield an octave 

translated 𝑛-ad: compare in Example 5 positions −7 and 7.14 To represent this 

observation, the line may be “twisted” in three dimensions to form a spiral (or 

helix), such that the circumference of the spiral when “looked down” at, as it 

were, from “above,” is 𝑎𝑛 segments long. As shown in Example 6, this three-

dimensional representation may be collapsed into two dimensions, depicting 

exactly the “vantage point” just mentioned. Under this representation, rather 

than a line of indefinitely many segments, we have a circle the circumference 

of which is exactly 𝑎𝑛 segments long. Each of the 𝑎𝑛 positions on the circle 

represents an octave class, that is, a maximal class of 𝑛-ads all relatable to each 

other by translation by an arbitrary number of octaves. (For this reason, the 

fourteen “hours” in Example 6 are labeled with dyads that lack register 

designation.) Any single clockwise move represents the class of permutation 

and translation (𝑝+ mod 𝑛, 𝑡+ mod 𝑎), and the class of voice-leading sums 

1(mod 𝑎𝑛); for the counterclockwise direction (𝑝−, 𝑡−) replaces (𝑝+, 𝑡+), and 

 
13 There is no “meaning” to “right, positive, (𝑝+, 𝑡+),” versus “left, negative, (𝑝−, 𝑡−),” except 

that the two sets of terms refer to opposite directions. From the purely formal point of view, any 

two corresponding terms in these two triples are interchangeable. 
14 This result also follows from the relation gcd(𝑎, 𝑛) = 1.  
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the class of voice-leading sums is −1(mod 𝑎𝑛).15 So much for the case 

gcd(𝑎, 𝑛) = 1. 

 

Example 6   Circular graphic representation of recursive permutation and translation of the 7-scale dyad-

class (C, E), 𝑉𝐿𝑆 ≡ ±1 (mod 14), moving clockwise (respectively, counterclockwise) 

If 𝑎 and 𝑛 are not coprime (that is, gcd(𝑎, 𝑛) > 1), then there are no 

solutions to Equation 1 for 𝑉𝐿𝑆 = ±1, and more than one solution for 𝑉𝐿𝑆 =

0. Therefore, our task under this scenario is to find (standard) solutions, other 

than (𝑝, 𝑡) = (0, 0) (the trivially balanced voice leading), to the equation 

 

𝑎𝑝 + 𝑛𝑡 = 0. 

 

In general, as in, e.g., (𝑎, 𝑛) = (12, 8), we cannot assume that 𝑛 divides 𝑎 (8 

does not divide 12, but has a divisor larger than 1, namely 4, that divides 12 as 

well). In the book, except for a passing reference in appendix 2 (see the 

rightmost diagram in Figure A2.12, p. 553), there is no example illustrating this 

general case.16 Therefore, I will consider here only the special case where 𝑛 

divides 𝑎, as in (𝑎, 𝑛) = (12, 3) (but see notes 17 and 18, and Example 2(b)). 

If 𝑛 divides 𝑎, assume that the 𝑛-ad of interest is translated by some 

multiple 𝑘 of  
𝑎

𝑛
 .17 For example, if (𝑎, 𝑛) = (12, 3), assume that the triad is 

 
15 Similarly to the line model (see n. 13), “clockwise” and “counterclockwise” may be 

interchanged at no cost. 
16 In the appendix reference on p. 553, the “size” of the scale (the number 𝑎 in this review) is 

not given, though it can be neither 7 nor 12, as the “size” of the chord (the number 𝑛 in this 

review) is apparently 4. 
17 More generally, 

𝑎

𝑔
, where 𝑔 = gcd(𝑎, 𝑛) > 1. 
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translated by some multiple 𝑘 of  
12

3
= 4. Under this assumption, the formula 

𝑎𝑝 + 𝑛𝑡 assumes the form 𝑎(𝑝 + 𝑘).18 It is easy to see that for 𝑎(𝑝 + 𝑘) to equal 

zero, 𝑝 and 𝑘 must be additive inverses one of the other. For example, again 

with (𝑎, 𝑛) = (12, 3), if 𝑘 = ±1 (i.e., 𝑡 = ±4), then 𝑝 = ∓1; if 𝑘 = ±2 (𝑡 =

±8), 𝑝 = ∓2, etc. “Weeding out” the “non-standard” (𝑝, 𝑡) pairs, we are left, in 

addition to the trivial (𝑝, 𝑡) = (0, 0), with (𝑝, 𝑡) = (±1,∓4). It is not difficult 

to see that these three are the only standard solutions of the equation 12𝑝 +

3𝑡 = 12(𝑝 + 𝑘) = 0.  

Example 7 is a geometric representation of non-trivially maximally 

balanced voice leading, 𝑛 divides 𝑎. The example assumes (𝑎, 𝑛) = (12, 3), 

with the triad of interest being (0, 4, 7). Note that after 𝑛 − 1 iterations (two, in 

the example), the recursive process cycles back to the exact point of origin. 

Accordingly, the diagram is a circle with a circumference consisting of exactly 

𝑛 segments. 

 

Example 7   Circular graphic representation of recursive permutation and translation of the 12-scale 

triad (0, 4, 7), 𝑉𝐿𝑆 = 0, (𝑝, 𝑡) ≠ (0,0) 

It is important to note how different from each other are the superficially 

similar diagrams in Examples 6 and 7. Example 6, the reader will recall, is a 

two-dimensional circular projection of a three-dimensional spiral or helix that 

conceptually extends indefinitely in space. Under this projection, each position 

on the circle represents an infinitely large class of 𝑛-ads, namely, the maximal 

class of 𝑛-ads all relatable by (some) octave translation to one of its members. 

In Example 7, by contrast, the two-dimensional circle with its 𝑛 positions, each 

position representing exactly one 𝑛-ad, is all there is. Moreover, whereas in 

Example 6, all 𝑎 distinct translations modulo the octave translation, of any 

member of any given class, are represented, in Example 7 a representation exists 

for only a subset of exactly 𝑛 such translations (namely, the 𝑛 positions on the 

circle, 3 in our example).   

 
18 More generally, 𝑎 (𝑝 + 𝑘

𝑛

𝑔
), where 𝑔 = gcd(𝑎, 𝑛) > 1. 
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3. 

The “spiral diagrams” are described by the author as “the main theoretical 

models used in this book” (p. 580). In assessing their success as models, it will 

be useful to begin with the diagram of Figure 3.1.3 (p. 99), reproduced here as 

Example 8. Under the terms used in this review, the diagram assumes (𝑎, 𝑛) =

(7, 2), the dyad of interest being of the type (C, E). All dyads in the diagram are 

represented by their “roots,” i.e., “C” for (C, E), “F” for (F, A), etc.; as the author 

explains, “looping around the spiral”—by which he presumably means moving 

clockwise from “C” to “F” (for example), passing “B,” “A,” and “G”—

“transposes along the chord, turning thirds into sixths [e.g., (F5, A5) into (A4, 

F5)] and vice versa” (p. 98). 

 

Example 8   The book’s Figure 3.1.3 (p. 99). “A series of clockwise moves in the space produces a 

descending-fifth progression in which thirds and sixths alternate.” © Oxford University Press 2023. 

Reproduced with permission of Oxford Publishing Limited through PLSclear 

The first thing to note about Example 8 is that although the graph as such 

is drawn as a loop that winds around twice before returning to the point of 

origin, and moreover, consecutive positions on the loop are labeled with step-

related dyads (roots C, B, A, etc., moving clockwise), the author’s attention is 

rather focused on the descending fifth relationships that straddle the two strands 

of the loop (C to F, F to B, etc.): these relationships are not only singled out by 

the heavy curved arrows, but are spelled out in staff notation at the right-hand 

portion of the figure. Indeed, referring to Figure 3.1.2, a version of the same 

diagram on the previous page, the author singles out the voice leading associated 

with the descending-fifth root progression (as in C5 moving to A4 in the lower 

voice together with E5 to F5 in the upper, in the first two dyads given on the 

staff)—not the voice leading associated with the descending-second root 

progression (C5 to B4, E5 to D5)—as “the descending basic voice leading for 

diatonic thirds, since it connects every point on the graph to its nearest 
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clockwise neighbor” (p. 98, original emphasis). As the author clarifies in a 

footnote, this particular voice leading is defined by a progression that “reduces 

the dyad’s center of gravity by one” (recte, 
1

2
, as the author in fact shows 

subsequently in the same footnote), a condition equivalent to 𝑉𝐿𝑆 = −1.19 

“Repeatedly applying the basic voice leading,” the author suggestively adds 

shortly thereafter, “moves through the two inversions … of the interval (third 

and sixth), touching on each inversion of every imperfect consonance before 

returning to the initial chord, now with the notes transposed by octave (Figure 

3.1.3).” 

Why the author draws the graph in a manner so blatantly at odds with what 

seems to be its main point will be conjectured subsequently in this section. For 

the moment, four comments are in order. 

 

(1) It is contrary to accepted norms of graphing not to provide, a priori, 

edges connecting pairs of vertices (e.g., “C” and “F”) that form a 

relationship regarding which the graph pretends to make some claim: cf. 

the claim on p. 98 that, for example, “F”—not “B”—is the “nearest 

clockwise neighbor” of “C.” 

(2) If “looping around the spiral” indeed means moving, e.g., from “C” to 

“F” by way of “B,” “A,” and “G,” then the motion from “G” to “F” 

cannot be different in kind from the other stepwise motions, meaning 

that thirds remain thirds, and similarly sixths. Otherwise, “looping 

around the spiral” has a private meaning for the author, outside the realm 

of ordinary graph-theoretic discourse.20 

(3)  The “loop rule,” in any case, works as expected only in one direction. 

For example, in Example 8 one must move clockwise along the spiral 

from “C” to “F,” passing “B,” “A,” and “G,” to (supposedly) represent 

the (non-standard) case (𝑝, 𝑡) = (1,−4), 𝑉𝐿𝑆 = −1; the 

counterclockwise direction by way of “D” and “E” does not express the 

inverse case, (𝑝, 𝑡) = (−1, 4). It follows that prior, non-graphic 

knowledge is needed for the graph to be useful. 

(4) Finally, and crucially, the graph fails to make sense as a representation 

of “hierarchically nested transposition” (p. 42), for the simple reason 

 
19 As the author explains on p. 87, the “center of gravity” of an 𝑛-ad is the average 

𝑐0+𝑐1+⋯+𝑐𝑛−1

𝑛
  

of its elements 𝑐𝑖. Thus, a change in the center of gravity is 
𝑉𝐿𝑆

𝑛
. The author’s bias towards 

negative voice-leading sums will be considered shortly. 
20 Such a private meaning is indeed suggested on p. 44, where the author explains that “a full 

loop around the center of the space … requires ‘jumping rings,’ or leaving the spiral at some 

point, as discussed in appendix 2” (original emphasis; see the upper portion of Figure P2.11, p. 

45). However, in the appendix mentioned, in a context referred to in n. 21, the author correctly 

notes that “points not on either helix have no musical meaning” (p. 546). 



 

 

A Manual for One User    16 

that each node, by itself, already represents “transposition along the 

collection” (that is, non-zero permutation): the node “C,” for example, 

represents both (C5, E5) and (E4, C5), as the staff-notated portion of the 

figure makes explicit (compare the second measure with the first).21 

If, however, one follows through twice the descending-fifths path traced by the 

heavy curved arrows, effectively ignoring the loop drawn, with clockwise and 

counterclockwise interchanged Example 8 may be construed as equivalent to 

Example 6, the two-dimensional circular projection of a (hypothetical) helical 

diagram illustrating the case 𝑎 and 𝑛 are coprime. 

Regardless of whether Example 8 is but a poorly executed version of 

Example 6, an apparently important motivation of the author’s for presenting 

it—the rationalization of (triadic) 7-scale root progressions by descending 

fifth—misses the mark, both theoretically and analytically. In section 4 I will 

consider the analytic perspective that concerns the root progression by fifth; 

here I will consider the theoretical perspective that concerns its descending 

direction. 

As noted in section 2 (see notes 13 and 15), such terms as “positive,” 

“ascending,” and “clockwise” may be respectively interchanged, at no formal 

cost, with “negative,” “descending,” and “counterclockwise.” Moreover, the 

author seems especially interested in opposite-signed 𝑝 and 𝑡, that is, in 

permutation (AKA “transposition along a collection”) and translation that work 

in contrary directions, so that if one “descends,” the other “ascends.”22 Thus, 

even if it were true, as the author claims on p. 47, that “in many musical styles, 

melodic steps tend to descend while leaps tend to ascend,” his claim on p. 99 

that “purely contrapuntal relationships [i.e., 7-scale two-voice configurations] 

will tend to privilege [descending] fifth motion,” is not supported by the 

formalism used (or at any rate, implied), and even less so by the constraints 

under which the author seems particularly interested in engaging it. 

 
21 In the book’s appendix 2, pp. 545−46, the author employs the idea of a “union of helices” to 

generate such permutationally multivalent nodes. 
22 Numerous comments in the book strongly suggest that this is the case, starting with the 

following comment on p. 15: “Particularly important is the technique of counteracting, or nearly 

counteracting, an operation at one level with its analogue at another: combining transposition 

along chord [i.e., Tymoczkian permutation] and scale [i.e., translation, in a direction opposite 

to that of permutation] to produce efficient voice leading….” On the other hand, when the author 

seems to allow, as in the spiral diagrams, for such pairs (𝑝, 𝑡) as (0, ±1), the result, as we have 

just seen, is incoherent. 

Though the term “efficient voice leading” is not defined in the book, from the following 

statement on p. 88 we learn that the author believes that “maximal efficiency” (presumably, in 

some non-trivial sense) entails maximal balance: “the most efficient voice leading between two 

vertical configurations will necessarily minimize the change in center of gravity” (i.e., maximize 

the balance—see n. 19). Therefore, in the statement just quoted it seems safe to substitute 

“balanced voice leading” for “efficient voice leading.”  
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The author’s Figure 2.1.3 (p. 49), repeated numerous times in chapter 2 and 

reproduced here as Example 9, is the spiral diagram for “chromatic triads”; that 

is, (𝑎, 𝑛) = (12, 3), the triad of interest being of the type (0, 4, 7). If Example 

8 was the author’s version of a case representing the scenario 𝑎 and 𝑛 are 

coprime, Example 9 is his version of the scenario 𝑛 divides 𝑎. As in Example 

8, chords are represented by their “roots.” 

 

Example 9   The book’s Figure 2.1.3 (p. 49). “The spiral diagram for chromatic triads. Each point 

represents a complete major triad.” © Oxford University Press 2023. Reproduced with permission of 

Oxford Publishing Limited through PLSclear 

Example 9 inherits all the deficiencies noted in connection with Example 

8. Briefly, edges expressing “radial motion between nearby chords” (p. 49, 

original emphasis), e.g., “C” to “E,” are missing; “looping around the spiral” is 

not only ill-defined, but achieves the desired voice leading in only one direction 

(as the author acknowledges in note 3, p. 50); and crucially, “transposition along 

the collection” is pre-embodied in each node independently of any motion 

between nodes. 

Strikingly missing in the author’s discussion of Example 9, compared to 

Example 8 and other diagrams of the type 𝑎 and 𝑛 are coprime (notably Figure 

3.4.1 on p. 113 for “diatonic triads”), is the notion of “basic voice leading.” 

Ignoring the author’s bias towards the negative direction, under the scenario 𝑎 

and 𝑛 are coprime, we have seen, “basic voice leading” is defined by a change 

in the chord’s “center of gravity” of 
1

𝑛
, a definition equivalent to |𝑉𝐿𝑆| = 1. 

Under the scenario 𝑛 divides 𝑎, the analogous definition, equivalent to 𝑉𝐿𝑆 =

0, (𝑝, 𝑡) ≠ (0, 0), would have been: “unchanged center of gravity, non-

trivially.” The omission of “basic voice leading” in connection with Example 9 

is particularly puzzling, since in reference to “radial motion,” exemplifying 

precisely the idea of (non-trivially) unchanged center of gravity, the author 

makes some of the most suggestive comments in the book in terms of 

VLS/TTPC (p. 69, emphasis added): 
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[The] basic principles [of the spiral model] are completely independent of a chord’s 

specific intervallic content, depending only on the size of the chord and the size of 

the scale…. In each case [i.e., various triads relative to the 12-scale used by the author 

as examples], radial motion involves the same total amount of upward and downward 

semitonal motion, so that the sum of the paths in all voices is zero semitones. This 

universality is one of the most remarkable features of the geometry, a single 𝑛-in-o 

graph describing any 𝑛-note chord in any o-note scale.23 

The probable reason for the author’s omission of “basic voice leading” 

under the scenario 𝑎 and 𝑛 are not coprime, may also explain the idiosyncrasies 

of the spiral diagrams in general. 

If 𝑎 and 𝑛 are not coprime, write gcd(𝑎, 𝑛) = 𝑔 > 1. In such a case, the 

postulated “basic voice leading” (i.e., the voice leading associated with 𝑉𝐿𝑆 =

0, (𝑝, 𝑡) ≠ (0, 0)) generally generates a set of exactly 𝑔 distinct translations, 

modulo the octave translation, of the 𝑛-ad of interest.24 If 𝑛 divides 𝑎 we have 

𝑔 = 𝑛, so that the number of distinct translations is 𝑛, as we have seen in 

Example 7, where (𝑎, 𝑛) = (12, 3). In the general “recipe” given on pp. 42−43 

for drawing spiral diagrams, the author derives rule A, “draw a spiral with 𝑛 

loops, attaching its end to its beginning” (see Figure P2.9 on p. 43), by 

apparently generalizing from the case 𝑛 divides 𝑎. The author derives rule B, 

“mark off o [i.e., 𝑎] equally spaced points along the spiral, labeling them with 

consecutive scale tones” (see Figure P2.10 on p. 43), by apparently generalizing 

from the case 𝑎 and 𝑛 are coprime, where, as we have seen in Example 6, the 

“basic voice leading” generates all 𝑎 distinct translations of the 𝑛-ad (modulo 

the octave translation). Both apparent generalizations, possibly expressions of 

what the author refer to on p. 5 as “the Prime Directive” (see the discussion of 

“Gesualdo’s trick” in the following section of this review), are not supported by 

the underlying algebra. 

4. 

I begin this more analytically oriented section of the review with two debts: a 

debt from the previous section regarding the author’s bias, most notably in a 7-

scale dyadic context, for 𝑉𝐿𝑆 = −1, and a debt from section 2 regarding 

“Tymoczkian permutation,” AKA “transposition along a collection.” I then turn 

to the author’s claims regarding the opening of Gesualdo’s madrigal Moro 

lasso, the first music analyzed in the book.   

 
23 Note that “the sum of the paths in all voices” is 𝑉𝐿𝑆. Supplying references that provide no 

supportive argument, the author states on p. 575 that a basic voice leading “is found only when 

the size of the chord is relatively prime to the size of the scale (§3.1, §3.4, appendices 1−2).”  
24 The qualification “generally” is meant to exclude “symmetrical” 𝑛-ads, such as the 12-scale 

“octatonic collection.” 
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On p. 99, the author claims vis-à-vis Example 8 that “purely contrapuntal 

relationships will tend to privilege [descending] fifth motion: if we are in two-

note diatonic space, then fifth-related dyads are literally adjacent to one 

another.” In the previous section I commented on the lack of formal support for 

the author’s bias towards 7-scale dyadic root motion by descending rather than 

ascending fifth (that is, for 𝑉𝐿𝑆 = −1 rather than 𝑉𝐿𝑆 = 1), a bias so strong 

that the qualification “descending” in the statement just quoted is allowed to be 

understood implicitly. In support of this statement, the author proceeds to 

present excerpts in two voices from Palestrina and Beethoven. Regarding the 

Beethoven, the opening measures of the last movement of the Piano Sonata in 

E-flat major, Op. 27, No. 1 (Figure 3.1.6 on p. 100), if only by placing Roman 

numerals underneath the excerpt’s two-voice reduction, the author 

acknowledges that the dyads represent triads. I would argue, however, that a 

triadic structure is implicit also in the two-voice opening of Palestrina’s mass 

Ave regina coelorum (Figure 3.1.5 on p. 100), as rendered explicit in Example 

10 by unstemmed black noteheads and dashed slurs. To be sure, the stylistic 

norms to which Palestrina seems to have felt obliged would have prevented him 

from expressing the root-position diminished triad (B, D, F) of m. 3 in three 

voices; but such is the relationship, in music, between “surface” and “deep 

structure.” 

 

Example 10   (after Figure 3.1.5 on p. 100). Implicit triadic structure in the two-voice opening of 

Palestrina’s mass, Ave regina coelorum. Unstemmed black noteheads represent implied notes 

It is important to stress the underlying triadic structure of both the 

Beethoven and Palestrina excerpts, since, as the author discusses on p. 113, in 

the case of “diatonic triads,” (𝑎, 𝑛) = (7, 3), the root progression that expresses 

the “basic descending voice leading” 𝑉𝐿𝑆 = −1, is by ascending third rather 

than the presumably desired descending fifth. Thus, an apparent motivation for 

the author’s dyadic Example 8 is to make a case for triadic progression by 

descending fifth—inappropriately, as I have argued theoretically (in the 

previous section) regarding the descending direction and analytically (right 

now) regarding the fifth.25 

 
25 By “analyzing triadic music using dyadic logic” (p. 9, original emphasis), the author refers 

precisely to what I have just argued is an analytical misappropriation of Example 8 to excerpts 

like the Palestrina and Beethoven.  
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In section 2 I have pointed out that the author’s idea of “transposition along 

a collection”—“Tymoczkian permutation,” as I prefer to refer to it—is a 

generalization of the elementary-theory concept of “inversion.” Though 

valuable, the idea falls short of being “the single most important concept in 

music theory” (p. 37). In the context of VLS/TTPC, for example, the “cost” of 

assuming traditional inversion in place of Tymoczkian permutation is not that 

unbearable: restricting the discussion to chords in closed position, ordered from 

low to high. 

Consider in this connection the imitative mm. 3−6 of Domenico Scarlatti’s 

Sonata in A minor, K.3, a passage that the author analyzes in terms of the 

“purely diatonic” 7-scale in the upper portion of Figure P2.3 on p. 39, 

reproduced as Example 11(a). The main point of the analysis is to show that, in 

addition to the descending octave translation from right hand to left (see the 

straight arrow labeled T−7 between the staves), the bracketed opening idea is 

translated (“transposed along the scale”) in the left hand by ascending 3rd (T2, 

equivalent to 𝑡 = 2 in this review—see the curved arrow below the staves), and 

“transposed along the chord” (that is, permutated) in the right hand (t1, 

equivalent to 𝑝 = 1 in this review—the curved arrow above the staves).26 In 

other words, ignoring the return to A4 in m. 4 and the corresponding return in 

m. 6 to C5, the chord (A4, E4, C5) of m. 3 is presumably permutated once 

upward to (C5, A4, E5) in m. 5. However, (C5, A4, E5) is not the first upward 

permutation of (A4, E4, C5); in fact, it is not a permutation of (A4, E4, C5) at 

all. The two upward permutations of (A4, E4, C5) are shown in Example 11(b). 

As may be seen, (C5, A4, E5) is at best an octave translation of the original 

chord’s second permutation. 

 
26 The “nonharmonic” B4 and G♯4 of m. 4 are ignored. See, in this connection, chapter 5, 

“Nonharmonic Tones” (pp. 210−52). 
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Example 11   (a) From the book’s Figure P2.3 (p. 39). “Domenico Scarlatti’s Sonata in A minor, K.3, 

mm. 3–6.” © Oxford University Press 2023. Reproduced with permission of Oxford Publishing Limited 

through PLSclear. (b) The two upward permutations of the chord (A4, E4, C5) of m. 3 

That the two upward, Tymoczkian permutations of (A4, E4, C5), are indeed 

as depicted in Example 11(b) may seem puzzling at first. And yet, the first 

upward permutation of (A4, E4, C5), a chord representing the “klang” (A, E, 

C),27 begins, as shown in Example 11(b), with E—not C. For, when “we 

compress … [some] chord’s notes into a single octave” (p. 38), unless the chord 

represents a klang of a special type to be specified shortly, we may implicitly 

alter the cyclic ordering of the klang represented. For example, when Scarlatti’s 

(A4, E4, C5), representing (A, E, C), is “compressed” into the octave above and 

including A4, ordered from low to high the chord becomes a representative of 

(A, C, E), thus reversing the cyclic order of E and C. Only if the chord, as 

defined in the appendix of this review, represents a standard klang such as 

(A, C, E),28 does its “compression” into a single octave preserve the original 

cyclic order. For example, (A4, C5, E5), (A4, C6, E5), and (A4, C5, E4), all 

represent the standard klang (A, C, E).29 In short, the Scarlatti example does not 

represent, as the author believes, Tymoczkian permutation, AKA “transposition 

 
27 A “klang” is an ordered set of step-classes, where “step class” is an equivalence class 

containing all and only steps, octave-related to one of the members of the class. See Definition 

1.1 in the appendix to this review. 
28 Klangs such as (A, C, E) or (A, C, E, G), in any cyclic permutation, are standard. See 

Definition 3.1 in the appendix to this review. The klang (A, E, C) is not standard. 
29 Equation 1 is proven in the appendix of this review relative to standard klangs. Note that a 

chord such as (A4, C5, E4) need not necessarily be expressed melodically, that is, ordered in 

time. For example, what is sometimes referred to as a “consonant six-four chord” of the “waltz 

or march type” (Edward Aldwell and Carl Schachter, Harmony and Voice Leading, 2nd ed. (San 

Diego: Harcourt Brace Jovanovich, 1989), 300), may be thought of as a chord exactly like (A4, 

C5, E4), that is, a chord representing a root-position klang such that the representative of the 

fifth is placed below that of the root. In such a case, the vertically expressed closed-position 

chord is not ordered from low to high. 
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along a collection,” but rather what may be described informally as an 

“arpeggiating sequence”: a sequence the overall melodic progression of which 

outlines a chord.30 

* * * 

Following some introductory remarks on pp. 1−4, the book proper begins 

on p. 4 with the author’s analysis of the famous opening progression of 

Gesualdo’s madrigal Moro lasso (see Example 12, reproducing the upper 

portion of Figure 1.1.1, p. 5). According to the author, these measures exhibit a 

“trick” found also in Beethoven, Schubert, and Debussy (Figure 1.1.2), as well 

Mozart (Figure 1.1.3), Stravinsky (Figures 1.1.4 and 1.1.7), and Rudresh 

Mahanthappa (Figure 1.1.5). 

 

Example 12   From the book’s Figure 1.1.1 (p. 5). “The opening of Gesualdo’s ‘Moro lasso’ (1611).” © 

Oxford University Press 2023. Reproduced with permission of Oxford Publishing Limited through 

PLSclear 

The motivation for opening the book with “Gesualdo’s trick,” the essence 

of which will be stated shortly, seems to be to introduce what for the author is 

“the Prime Directive: whenever you find an interesting musical technique, try 

to generalize it to every possible chordal and scalar environment” (p. 5, original 

emphasis). But I believe this is just an obfuscation. For, what is striking about 

the 1611 excerpt is not just the daring chromaticism couched in relatively 

smooth voice leading (even smoother if the passage is reduced to three voices, 

eliminating doublings), but that it systematically alternates root-position major 

triads with first-inversion minor ones: twice in a row, if one accepts the author’s 

claim that the G-major sixth-chord replaces an implied G-minor one. As the 

reader will recall, the 7-scale obliterates the distinction between major and 

minor altogether (for this reason, the author’s Figure 1.1.6, the “Pachelbel 

sequence” conceived in terms of the 7-scale, is irrelevant in this context); as to 

the 12-scale, since the VLS/TTPC insight, as noted in section 2, applies only to 

 
30 Possibly akin to what the author refers to on p. 188 as “structured arpeggiation.” Had fugal 

answers in minor been oriented towards the mediant key rather than that of the (minor) 

dominant, Scarlatti’s left-hand arpeggiating sequence would have represented a “real” answer, 

whereas that of the right hand, a “tonal” one. 
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chords of a given type (that is, chords related by permutation and translation), 

it has nothing to say regarding passages like the Gesualdo, that mix triads of 

such different types as (0, 4, 7) and (0, 3, 7).31 The hidden motivation for 

opening the book with “Gesualdo’s trick,” therefore, is to work around this 

critical theoretical impasse. 

The author does not address the impasse explicitly until section 6 (pp. 

68−71) of chapter 2, “Rock Logic” (pp. 47−95). The chapter, for which the main 

theoretic model is the “spiral diagram for chromatic [major] triads” discussed 

earlier in this review as Example 9, analyzes, at least until section 7, musical 

excerpts consisting predominantly of major triads. “By now” the author 

appropriately notes on p. 68, “readers will be wondering how to fit minor triads 

into the spiral model.” 

The author’s “first answer” to this question is that “Figure 2.1.3 [i.e., 

Example 9] can be used to represent any type of three-note chord in chromatic 

space” (p. 68, original emphasis). Only after a lengthy digression that drives 

home this point,32 does the author acknowledge its irrelevance to the question 

asked: “of course, we would really like to represent both major and minor 

chords at the same time” (p. 69, emphasis added). He then proceeds to offer two 

solutions.33 

The first proposed solution, illustrated in Figure 2.6.2 (p. 70), is to 

superimpose “major and minor spiral diagrams” such that the “minor diagram” 

is slightly rotated clockwise relative to the “major diagram.”34 Referring to 

“Gesualdo’s trick,” the author comments (ibid.): “we can use this graph to 

represent chromatic triadic sequences such as those in Gesualdo and Mozart 

(§1.1).” The second proposed solution is “to use Figure 2.1.3 [i.e., Figure 9] to 

represent major or minor triads, with the single point ‘C’ standing for both C 

major and C minor” (ibid., original emphasis). 

It is not difficult to see that either “solution” merely compounds the severe 

problems already inherent in Example 9, as discussed in section 3 of this review. 

For example, under the first “solution,” in addition to the conspicuously missing 

“radial” edges within each of the two superimposed triadic graphs, e.g., “C” to 

“E” in major and “c” to “e” in minor, edges are now missing as well between 

points lying one in each graph, e.g., “C” to “c.” The second “solution,” 

 
31 Tentatively assuming, that the 12-scale triads (0, 4, 7) and (0, 3, 7) are the same objects as the 

tonal “major” and “minor” triads, respectively. See section 5. 
32 As noted in section 3 of this review, the digression in fact contains some of the most 

suggestive comments in the book regarding the case 𝑛 divides 𝑎. 
33 A “third strategy for simultaneously modeling major and minor triads,” suggested at the very 

end of this section (p. 71), is to use the 7-scale. As noted, this is equivalent to obliterating a 

priori the distinction between major and minor. 
34 In the printed version of the book, spiral diagrams for tetrads, not triads, are mistakenly 

superimposed at this point. 
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similarly, compounds the crucial problem of multivalent nodes. Indeed, when 

the author concludes this entire discussion with the statement “in the rest of the 

chapter, I will mostly follow the strategy of grouping [parallel] major and minor 

together, sacrificing detail in the name of graphical simplicity” (p. 71, emphasis 

added), he admits de facto of failing to have solved the problem. 

Where does all this leave us regarding “Gesualdo’s trick”? To answer this 

question, I finally note that the “trick” is to have “two voices moving in parallel 

[e.g., soprano and bass in Example 12] with the third [e.g., the composite of 

tenor alternating with alto] alternating between prime and inverted forms of a 

sonority” (p. 6, emphasis added). The crux of the “trick,” in other words, is to 

regard the “major” and “minor” 12-scale triads as related by inversion, in the 

mathematical sense that one is a reflection of the other.35 Since VLS/TTPC is 

silent regarding “inversion” in this sense, the “trick” is thus a cover for the 

author’s unacknowledged first attempt to solve the “major/minor problem.” 

The idea that VLS/TTPC may (conceivably) be expanded to incorporate 

both reflection and counter-permutation (that is, the reversal of cyclic order), is 

hinted already on p. 15, where the author notes (original italics, bold mine):  

Particularly important is the technique of counteracting, or nearly counteracting, an 

operation at one level with its analogue at another: combining transposition along 

chord [i.e., Tymoczkian permutation] and scale [i.e., translation, in a direction 

opposite to permutation] to produce efficient voice leading, or combining inversion 

along both chord [i.e., counter Tymoczkian permutation] and scale [i.e., reflection] 

to produce Gesualdo’s trick (appendix 3).  

However, only in appendix 1 (and again in appendix 3)—that is, more than 520 

pages after the reader was introduced, under a false pretense, to “Gesualdo’s 

trick”—the idea is finally made explicit. As may be seen in Example 13, 

reproducing part of Figure A1.1 (p. 534), the 12-scale chord (“C4,” “E5,” “G5”) 

is first counter-permutated (that is, its cyclic order is reversed—note the 

reversed stems) to (“G5, “E4,” “C4”), which is then reflected to become (“C4,” 

“E♭5,” “G5”). “The result” the author states on p. 535 “is a voice leading 

between two similarly voiced, inversionally related pitch-class sets, known to 

theorists as ‘neo-Riemannian transformations.’” The author then claims, 

misleadingly: “These [neo-Riemannian] transformations are generalized as 

‘Gesualdo’s trick’ in §1.1.”  

 
35 Note the distinction between “inversion” as reflection and “inversion” as permutation. The 

author clarifies the terminological ambiguity on p. 577. 
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Example 13   From the book’s Figure A1.1 (p. 534). “Inversion occurring at both the triadic and 

chromatic levels.” © Oxford University Press 2023. Reproduced with permission of Oxford Publishing 

Limited through PLSclear 

For, as the author sees it, neo-Riemannian transformations do not map (0, 

4, 7) onto (0, 3, 7), but rather onto (7, 3, 0), that is, “root” and “fifth” are 

reflectively interchanged. Indeed, it is precisely this “dualistic” stance by which 

the minor (respectively, major) triad is a major (respectively, minor) triad 

“standing on its head,” that forces the author to perform “inversion of inversion” 

(the only trick that I can see here), as he admits on p. 577 under “Terms, 

Symbols, and Abbreviations” (emphases added):  

Neo-Riemannian progression. A spacing-preserving voice leading between 

inversionally related chords; it can be decomposed into a pair of inversions along 

intrinsic and extrinsic scales…. Any such progression will preserve the distance 

between at least two voices and can be used in Gesualdo’s trick.  

5. 

The noun “tonality” is conspicuously absent from the book’s index, nor does it 

appear among the terms, symbols, and abbreviations explained on pp. 575−81. 

For the adjectival form, however, we find the following (580): 

Tonal. An ambiguous term that can refer to music that is functionally tonal (see 

above), or non-atonal. In addition, the adjective sometimes refers to keys and modes 

(“tonal center,” “tonal region,” “tonal plan”). I typically use the term as a synonym 

for “non-atonal,” encompassing techniques common to a range of modal and 

functionally tonal styles. 

Whatever one makes of this statement, it at least seems to suggest a dichotomy 

of “tonal” versus “atonal.” But then, we read on p. 2 (emphasis added): 

To call … [the book’s program] a “generalized tonal theory” would be a misnomer, 

for its techniques are broad enough to embrace extremes of consonance and 

dissonance, encompassing both tonality and atonality.36 

 
36 A search for “tonality” in the digital edition of the book reveals that this is practically the only 

stand-alone appearance of the term, its other appearances being almost exclusively part of the 

composite “functional tonality” (see n. 38). 
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Now, the author is totally within his rights to let the words “tonal” and 

“tonality” mean anything or nothing as he deems fit. But then, the author is not 

within his rights, not having provided coherent guidance as to what the first 

word in the title of his book means, to proceed and simply apply wholesale the 

implicit meaning of “tonality,” whenever his theory, whatever it is about, fails 

to deliver the goods. As “owners” of tonality,37 we seem to have an intuitive 

sense of what the term includes, which is first and foremost an underlying 

“scale” that consists of two types of “steps,” namely “whole steps” and “half 

steps” (and hence, apropos Gesualdo, two types of “consonant triads,” namely 

“major” and “minor”), a scale that, moreover, can be “chromatically altered” 

without compromising its basic identity (as in certain usages, apropos Gesualdo 

again, of musica ficta, or the three traditional varieties of the minor mode, or, 

more generally, “modal mixture”); surely, “tonality” also includes such notions 

as “tonic” (and hence, “key”) and “functional harmony,” relevant especially 

(but arguably not exclusively) to music of the “common-practice” period.  

Consider again the “spiral diagram for chromatic [major] triads” (Example 

9 above), of which the “straightforward features of musical geometry” are 

supposedly reflected in “a variety of rock progressions” (p. 33), the topic of 

chapter 2. Leaving aside the severe logical deficiencies noted in section 3 that 

render questionable the diagram’s fitness to serve as a model of anything, or its 

inability, in any case, to address progressions that mix different types of chords 

as discussed in section 4, the diagram assumes, with no theoretical argument, 

that a 12-scale triad such as (0, 4, 7) is the same as the tonal triad (C4, E4, G4)—

not, e.g., (B♯4, F♭4, G4). Subsequently in the same chapter, again with no 

theoretical argument, the author “rewrites the spiral diagram using Roman 

numerals” (p. 56, emphasis added), a form retained through the remainder of 

the chapter. Thus, a 12-scale triad of type (0, 4, 7), already tacitly assumed to 

be the same as a major triad in the tonal sense, is further assumed to be the tonic, 

no less. Any “rock logic” that this chapter may exhibit therefore results from 

precisely those attributes of tonality that the author, at least in the first half of 

the book, feels free to assume but fails to acknowledge, let alone address.38 

 
37 “We speak of taking ownership of our own words” the author notes on p. 4, “and in our 

society people sometimes come to own objects of significant public concern—a historic home, 

a well-known work of art, an ecologically significant wetland, or a beloved sports team. In these 

cases, to be an owner is to be a custodian, temporarily inhabiting an office with responsibilities 

and duties that we might not have chosen.” 
38 As we have seen, the most that the author is willing to acknowledge with regards to tonality 

is that “tonal” “can refer to music that is functionally tonal” (p. 580, emphasis added), that is, 

music that uses a harmonic language “sometimes called ‘tonal’ as opposed to ‘modal’” (p. 576). 

Much of the latter part of the book, starting with chapter 6, “The Origins of Functional 

Harmony,” is about “tonality” in what seems to be a modally expanded sense of “functional 

tonality.” As noted at the outset of this review, I defer discussion of this part of the book to a 

sequel. 
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We are left to conclude that the entire first half of the book on which this 

review has focused is not about tonality in any normative sense of the term; 

alternatively, this substantial portion of the book is about “tonality” in a sense 

known only to its author. 



APPENDIX 

VOICE-LEADING SUMS UNDER TRANSLATION AND 

TYMOCZKIAN PERMUTATION OF CHORDS 

1. Klangs and their Cyclic Permutations  

DEFINITION 1.1. Fix 𝑎 > 𝑛 ≥ 2, 𝑎, 𝑛 ∈ ℤ. 

We shall refer to an ordered set 𝐾 of 𝑛 integer classes (mod 𝑎), as a klang. 

DEFINITION 1.2. Let 𝐾 = (𝜅0, 𝜅1, … , 𝜅𝑛−1), 𝐾′ = (𝜅0
′ , 𝜅1

′ , … , 𝜅𝑛−1
′ ), be klangs. 

We shall write 𝐾′ = P(𝐾) if  𝜅𝑖
′ = 𝜅𝑖+1 (mod 𝑛). 

Note: 

• P is a bijection on the set of klangs, hence the inverse function P−1 is 

defined. 

• The group (P𝑞,∘) of operations on {𝐾}, P𝑞 = P ∘ … ∘ P⏞      
𝑞 times

 if 𝑞 ≥ 1, P𝑞 = 

P−1 ∘ … ∘ P−1⏞        
|𝑞| times

 if 𝑞 ≤ −1, is a group of cyclic permutations. 

 

2. Chords, their Translations and “Tymoczkian Permutations”  

DEFINITION 2.1. Let 𝐾 = (𝜅𝑖) be a klang. 

We shall refer to an ordered set 𝐶 = (𝑐𝑖) of 𝑛 integers as a chord representing 𝐾, 

if 𝑐𝑖 ≡ 𝜅𝑖  (mod 𝑎).  

DEFINITION 2.2. Let 𝐶 = (𝑐0, 𝑐1, … , 𝑐𝑛−1), 𝐶′ = (𝑐0
′ , 𝑐1

′ , … , 𝑐𝑛−1
′ ), be chords 

representing the klangs 𝐾, 𝐾′, respectively. We shall write: 

 

(A)  𝐶′ = 𝕋(𝐶) if 𝑐𝑖
′ = 𝑐𝑖 + 1. 

(B)  𝐶′ = ℙ(𝐶) if both 

(1) 𝐾′ = P(𝐾) and 

(2) 𝑐𝑖 < 𝑐𝑖
′ < 𝑐𝑖 + 𝑎. 
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Note: 

• 𝕋 and ℙ are bijections on the set of chords, hence the inverse functions 

𝕋−1 and ℙ−1 are defined. 

• 𝕋𝑡(ℙ𝑝(𝐶)) = ℙ𝑝(𝕋𝑡(𝐶)) = 𝕋𝑡 ∘ ℙ𝑝(𝐶), where 𝕋𝑡 =𝕋 ∘ … ∘ 𝕋⏞      
𝑡 times

 if 𝑡 ≥

1, 𝕋𝑡 = 𝕋−1 ∘ … ∘ 𝕋−1⏞        
|𝑡| times

 if 𝑡 ≤ −1, and similarly for ℙ𝑝. 

• The group (𝕋𝑡,∘) of operations on {𝐶} is a group of translations; the 

group (ℙ𝑝,∘) is termed in this review “Tymoczkian permutations.”* 

 

3. Standard Klangs and Voice-Leading Sums 

DEFINITION 3.1. We shall refer to a klang 𝐾 = (𝜅𝑖) as standard if there exist 

representatives �̅�𝑖 of 𝜅𝑖 such that 

 

�̅�0 < �̅�1 < ⋯ < �̅�𝑛−1 < �̅�0 + 𝑎. 

 

DEFINITION 3.2. Let 𝐶 = (𝑐0, 𝑐1, … , 𝑐𝑛−1) and 𝐶′ = (𝑐0
′ , 𝑐1

′ , … , 𝑐𝑛−1
′ ) be chords. 

We shall write 

∑(𝑐𝑖
′ − 𝑐𝑖)

𝑛−1

𝑖=0

= 𝑉𝐿𝑆 

and shall refer to VLS as the voice-leading sum from 𝐶 to 𝐶′. 

THEOREM 3.1. Let 𝐾 be a klang. 

Then the following are equivalent: 

 

(1) 𝐾 is standard. 

(2) For any chord 𝐶 representing 𝐾, and for any 𝑝 and 𝑡, letting 𝐶′ = ℙ𝑝 ∘

𝕋𝑡(𝐶), we have: 

𝑉𝐿𝑆 = 𝑎𝑝 + 𝑛𝑡. 

 

 
* (ℙ𝑝,∘) is not truly a group of permutations, hence “Tymoczkian permutations” is, strictly speaking, 

a misnomer. But since these operations are partially determined by the cyclic permutations P𝑞 (see 

Definition 2.2(B)), the terminological transgression, I hope, may be excused. 
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Proof. Since the effect of arbitrary 𝑡 on VLS is obvious, we shall only consider the 

effect of 𝑝. Moreover, it suffices to treat 𝑝 = 1, since the rest will follow by 

induction. That is, we only need to prove that if 𝐶′ = ℙ1(𝐶), then 𝐾 is standard if, 

and only if, 𝑉𝐿𝑆 = 𝑎.  

Denote 𝑐�̅� the representative of 𝑐𝑖 in the interval [0, 𝑎), that is, 𝑐𝑖 = 𝑐�̅� +𝑚𝑖𝑎 

for some integer 𝑚𝑖 , 0 ≤ 𝑐�̅� ≤ 𝑎 − 1. Using Definition 2.2(B) we have: 

  

𝑐𝑖
′ = {

𝑐�̅�+1 +𝑚𝑖𝑎 if 𝑐�̅� < 𝑐�̅�+1, 

𝑐�̅�+1 + (𝑚𝑖 + 1)𝑎 if 𝑐�̅�+1 < 𝑐�̅�.
 

 

The number of indices 𝑖 (mod 𝑛) such that 𝑐�̅�+1 < 𝑐�̅� is at least 1, and is exactly 1 

if and only if there exists an index 𝑗 such that 𝑐�̅� < 𝑐�̅�+1 < ⋯ < 𝑐�̅�−1 < 𝑐0̅ < ⋯ < 

𝑐�̅�−1. This last condition is easily seen to be equivalent to the condition that 𝐾 is 

standard. This proves the theorem. 


